runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

m runlinc Intermediate Project 14: Temperature Monitoring with

DS18B20 (E32W Version)
Contents
INEEOAUCTION ...ttt ettt ettt s et et e e st et e bt e st e e esseeneeneensesaeeneensensens 1
Part A: Design the Circuit 0N TUNIINC.........ooiiiieiierieiiesie et see st resresnesenesenessnesssessnenenas 3
Part B: Build the CirCUIL......cocveiiiiiieeieeieeee ettt ettt nae s 3
Temperature Data Monitoring and StOTAZE.........cccuerererierinirieiereeetetesie ettt 7
EXPECted RESULL.....coueiieieie ettt ettt et ettt e b et eteeee e ee e 15

Introduction

This project focuses on building a real-time Temperature Monitoring System
using the DS18B20 digital sensor and an ESP32-based E32W development board
running runlinc. Data is displayed locally on a web page hosted inside the Wi-Fi
chip. The project is structured in two incremental steps: (1) simple real-time
numerical display of temperature, and (2) plotting a scrolling graph of the last
readings.

Problem

Accurate and continuous temperature monitoring is a common requirement in
many applications such as food storage, environmental control, and laboratory
experiments. Traditional methods often rely on manual readings or expensive
data-logging equipment. A lightweight loT approach that can be quickly
prototyped and deployed using readily available components helps lower the
barrier to adoption.

Background

The DS18B20 is a 1-Wire digital temperature sensor capable of measuring temperatures
from -55 °C to +125 °C with 12-bit resolution. When paired with runlinc on an ESP32, the
sensor’s readings can be accessed directly from the browser, allowing fast development of
interactive dashboards without flashing new firmware.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE| 1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

Ideas

Leverage runlinc’s in-browser programming model to:

* Read temperature from the DS18B20 sensor (named tempSensor on port D4).
e Update the displayed value every second.

« After verifying correct readings, extend the page with an SVG graph that scrolls
horizontally, showing the last ~100 s of data.

Plan

We have a DS18B20 digital temperature sensor that can measure the ambient temperature
around the device, and we plan to deploy it for temperature monitoring in crop-growing
areas.

DS18B20 |——> Microcontroller — > | temperature data output

Figure 1: Microchip Input/Output Block Diagram

The DS18B20 digital temperature sensor is used as a real-time temperature
acquisition device.

In the main loop, the DS18X20 function is called every second to read the current
temperature value, and the result is appended to an array to store the
temperature history. The latest temperature is immediately displayed in the
"Current Temperature" text box on the webpage. At the same time, an SVG line
chart is used to plot the temperature data in real time, enabling dynamic
visualization of temperature changes over time.

In summary, the DS18B20 is used in this project to continuously monitor
environmental temperature (e.g., in a crop growing area) at a per-second level
and visualize the collected data in real time, allowing users to conveniently track
temperature trends online.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 2

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

runlinc Background

runlinc is a web page inside a Wi-Fi chip. The programming is done inside the
browsers compare to programming inside a chip. The runlinc web page inside the
Wi-Fi chip will command the microchips to do sensing, control, data logging
Internet of Things (loT). It can predict and command.

Part A: Design the Circuit on runlinc
Note: Refer to runlinc Wi-Fi Setup Guide document to connect to runlinc

Use the left side of the runlinc web page to construct an input/output (I/0).
For port D4 name it tempSensor and set it as DS18X20_IN.

In our circuit design, we will be using the DS18B20 temperature sensor. We happen to
have this in our Kkits, so these can be used on our circuit design, as per the plan.

ESP32 D)
PORT CONFIGURATION NAME STATUS
D2 | DISABLED s P)
D4 | DS18X20_IN s | || tempSensor) 1
D5 DISABLED s P)
D12 DISABLED ¢) ([)
D13 | DISABLED D)

Figure 2: I/0 configurations connections

Part B: Build the Circuit

Use the STEMSEL E32W board to connect the hardware. For this project we are using
both the left and right I/0 ports, with negative port (-ve) on the outer side, positive
port (+ve) on the middle and signal port (s) on the inner side (as shown below).

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 3

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

Figure 3: Negative, Positive and Signal port on the E32W board

There is one 1/0 part we are using for this project, a DS18B20 temperature sensor. The
part has two variants which are built differently for different scenarios, you need to
choose one type to connect with. their respective pins are shown in the figures below.

Figure 4: 1/0 part with negative, positive and signal pins indicated

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 4

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

Figure 5: /0 part with negative, positive and signal pins indicated

Wiring instructions

a) Plug in the DS18B20 temperature sensor to io4 on the E32W board.

b) Make sure the (-ve) pin are on the GND (outer) side of the I/0 ports. If you are using
the sensor with wires, make sure the connections are as the one shown in the figure

below.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 5

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

=
Q
o

N
o
8

04

AOZN

£QEE0SZaY

TIINNNTIRRARTE

Figure 7: Circuit board connection with 1/0 part (top view)

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 6

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

Figure 8: Circuit board connection with 1/0 part (top view)

Temperature Data Monitoring and Storage

And then, we want to display the real-time temperature around the DS18B20 sensor.

Program the Circuit

HTML

The main purpose of this code is to build a web interface for displaying real-time
temperature data collected by the sensor. Specifically, it consists of the following
parts:

1.Title and Current Temperature Display
A prominent heading at the top of the page, plus a text area that updates in real
time to show the current temperature value.

2.Temperature Line Chart

An SVG element renders the coordinate axes—horizontal and vertical lines with
tick marks and labels—and dynamically plots a polyline on it to visually reflect
how temperature changes over time.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 7

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

3.Style and Script Inclusion

An external stylesheet is linked to style the page layout and typography, and an
external JavaScript file is loaded to periodically fetch temperature data and
update both the numeric display and the line chart.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 8

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>DS18B20 Temperature Monitor</title>
<link rel="stylesheet" href="style.css">
</head>
<body>
<div style="text-align:center">
<h1>Temperature Sensor Graph</h1>
<div class="a">
<td>Current Temperature: </td>
</div>

<svg height="350" width="600">

<polyline id="temperatureGraph" style="fill: none; stroke: darkblue; stroke-
width: 3" />

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE | 9

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

<text x="95" y="315" fill="black">0</text>
<text x="70" y="50" fill="black">50</text>
<text x="70" y="100" fill="black">40</text>
<text x="70" y="150" fill="black">30</text>
<text x="70" y="200" fill="black">20</text>
<text x="70" y="250" fill="black">10</text>
<text x="320" y="340" fill="darkblue">Time</text>
<text x="0" y="150" fill="darkblue" id="yTitleOne">Temperature</text>
<text x="0" y="170" fill="darkblue" id="yTitleTwo">" C</text>
<line x1="100" y1="300" x2="600" y2="300" stroke="black" />
<line x1="100" y1="0" x2="100" y2="300" stroke="black" />
</svg>
</div>
<script src="temperature.js"></script>
</body>

</htm|>

SS

div.a {

font-size: 25px;

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE| 1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

JavaScript:

Next, we will write the JavaScript code as follows:
1. Initialize the Drawing and Data Storage Environment

The code first defines the canvas dimensions, the horizontal spacing for each
sample point, and the maximum number of points that can fit on the canvas.

It also prepares two empty arrays: one to store the temperature values and
another for the corresponding polyline coordinates. This provides a unified
structure and container for later data collection and visualization.

2. Periodically Collect Temperature and Update the Current Reading

Within an infinite loop, the system triggers a temperature reading every 1
second.

The latest temperature is displayed in the "Current Temperature" section of the
webpage. If the reading is valid, it is stored in the temperature array for future
use in drawing the historical curve.

3. Maintain a Fixed-Length History Queue

To keep the polyline graph within the fixed canvas width, the oldest temperature
value is removed once the number of collected points exceeds the canvas limit.

This creates a “sliding window” effect: the graph moves forward in time, older
data gets pushed out, and the graph always maintains a fixed, scrollable width.

4. Convert Temperature Sequence into Polyline Coordinates

For each temperature value in the queue, the code calculates its vertical position
on the canvas (the direction depends on the coordinate system settings).

These coordinates are joined into a string and assigned to the “points™ attribute
of the SVG polyline element, allowing the browser to redraw the graph instantly.

5. Create a Continuous Loop of “Collect - Store - Draw”

The main loop keeps running, constantly repeating the three steps: reading the
temperature, updating the value, and updating the graph.

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE| 1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

As a result, the webpage simultaneously shows the real-time temperature value
and a scrolling polyline chart that reflects the surrounding temperature changes
over time.

var Height = 215;

var Width = 500;

var StartingWidth = 100;

var widthPerSample = 5;

var maxWidthSample = Width / widthPerSample;
vari=0;

var temperature;

var temperatureValues = [];

var temperatureElement;

var updatedTemperaturePoints;

var temperaturePoints = [J;

async function fetchTemperature() {
temperature = DS18X20_In(tempSensor);

document.getElementByld(‘temperature').innerHTML = "Current
Temperature: " + temperature + " °C";

if (isNaN(parseFloat(temperature)))
return;

temperature = parseFloat(temperature);

temperatureValues.push(temperature);

console.log(temperature)

updateGraph();

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE| 1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

function updateGraph() {
if (temperatureValues.length > maxWidthSample) {
temperaturePoints = [];
temperatureValues.shift();
varA=0;
var B = 100;
while (A < maxWidthSample) { // This condition avoids overflow
temperaturePoints[A] = (B +"," + (Height - temperatureValues[A)));
A++;
B +=5;
}
}else {

temperaturePoints[i] = (StartingWidth + "," + (Height -
temperatureValuesi]));

StartingWidth += 5;
i++;
}
temperatureElement = document.getElementByld(‘temperatureGraph’);
updatedTemperaturePoints = temperaturePoints.join(" ");

temperatureElement.setAttribute('points’, updatedTemperaturePoints);

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE| 1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

I/l Update temperature every second
async function loop() {
while (true) {
await new Promise(resolve => setTimeout(resolve, 1000));

fetchTemperature();

loop();

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE| 1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

Expected Result

aeh festons oo
¥

Load File

| Save

HTML
‘Run Code m [erdw | hitp:#/182 168 137 110]
C E

<IDOCTYPE html>

<htm] lang="gn">

<head>

emeta charsets"UTF-8">

meta name="viewport” content="width=device-width, initial-scale=1.8">
<title>DS1EB20 Temperature Monitore/titlex

<link rgl="styleshest” href="style.css™>

</head>

<body>

SP3Z

<div style=" “3
<hl>Temparature Sensor Graph</fonts</h1>
«div class:

<tdrcfont id="temperature”>Current Temperature: </td>
</div>

<polyline id="t, : none; stroke: darkblue; stroke-width: 3° />
<text x= R

<text x=

<text x=

<text x=

¥
<text x="78" y="200" fill:
70" y="258" fi
340

“>Tenperaturec/ text>
">0Cc/texts

<line x1="100" y1="360" y2="300" strokes"black” />
<line x1="166" y ="168" y2="308" stroke="black" />
</sver
</div>
<script srg="temperature.js></scripts
</body>
</html>

async function mu;m?gﬁ() {
‘temperature = 0518X30_In(tempSensor);

(*temperature’).innerHTHL = "Current Temperature: ™ + temperature + " °C";
(temperature)))

le) { // This condition avoids overflow

= (B +"," + (Height - temperatureValues[A]));

Network Status: Active

ints[3] = (startingdidth « ", « (Helght - tsmperatureNalues(11));

W(‘mmﬁ‘).m - “Current Temperature: + temperature + * °C";
+F (isliati(parseF. temperature))}

o
_J
—

«
_J
—

)| A
- shift();
var A = 8;
i var B = 100;
while (A <) { // This condition avoids overflow

= (B +"," + (Height - temperatureValues[A]));

2o
% }
} else {
Network Status: Timed Out mmﬁ;ﬁ_l&ll = idth + " + (Height - temperatureVelues(il));

// Update temperature every second
asyne function loop() {
while (true) {
await new Promise(resolve —> setTimeout(resolve, 1000));
03

¥
}

Lloop();

Figure 9: Expect runlinc result screenshot

© Copyright 2025 eLabtronics. All Rights Reserved
PAGE|1

runlinc Intermediate Project 114: Temperature Monitoring with DS18B20 (E32W
Version)

Temperature Sensor Graph

Current Temperature: 21.75 °C

50

40

Temperatusd)
°C

20

10

0
Time
Figure 10 Expect webpage screenshot

Summary

Project [14 demonstrates how a single DS18B20 sensor can be used with runlinc to display
and graph environmental data in real time—all within the browser on an ESP32 chip. The
two-step approach gradually introduces newcomers to sensor data acquisition before
adding visualisation techniques.

© Copyright 2025 eLabtronics. All Rights Reserved
P AGE| 1

	runlinc Intermediate Project 14: Temperature Monitoring with DS18B20 (E32W Version)
	Contents
	Introduction
	Problem
	Background
	Ideas
	Plan
	runlinc Background
	runlinc is a web page inside a Wi-Fi chip. The programming is done inside the browsers compare to programming inside a chip. The runlinc web page inside the Wi-Fi chip will command the microchips to do sensing, control, data logging Internet of Things...
	Part A: Design the Circuit on runlinc
	Part B: Build the Circuit
	Wiring instructions

	Temperature Data Monitoring and Storage
	Program the Circuit
	HTML
	1.Title and Current Temperature Display A prominent heading at the top of the page, plus a text area that updates in real time to show the current temperature value.
	2.Temperature Line Chart An SVG element renders the coordinate axes—horizontal and vertical lines with tick marks and labels—and dynamically plots a polyline on it to visually reflect how temperature changes over time.
	3.Style and Script Inclusion An external stylesheet is linked to style the page layout and typography, and an external JavaScript file is loaded to periodically fetch temperature data and update both the numeric display and the line chart.

	CSS
	JavaScript:
	1. Initialize the Drawing and Data Storage Environment
	2. Periodically Collect Temperature and Update the Current Reading
	3. Maintain a Fixed-Length History Queue
	4. Convert Temperature Sequence into Polyline Coordinates
	5. Create a Continuous Loop of “Collect → Store → Draw”
	Expected Result
	Summary

